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This special feature results from the symposium ‘Ants 2016: ant interactions
with their biotic environments” held in Munich in May 2016 and deals with
the interactions between ants and other insects, plants, microbes and fungi,
studied at micro- and macroevolutionary levels with a wide range of
approaches, from field ecology to next-generation sequencing, chemical
ecology and molecular genetics. In this paper, we review key aspects of
these biotic interactions to provide background information for the papers
of this special feature. After listing the major types of biotic interactions that
ants engage in, we present a brief overview of ant/ant communication,
ant/plant interactions, ant/fungus symbioses, and recent insights about
ants and their endosymbionts. Using a large molecular clock-dated Formi-
cidae phylogeny, we map the evolutionary origins of different ant clades’
interactions with plants, fungi and hemiptera. Ants’ biotic interactions provide
ideal systems to address fundamental ecological and evolutionary questions
about mutualism, coevolution, adaptation and animal communication.

1. Introduction

With over 13 000 named species [1], ants (Formicidae) are the largest group of
eusocial insects. Like other eusocial organisms, ant societies have cooperative
brood care, overlapping generations living in the same nest and a division of
labour with reproductive and non-reproductive individuals (workers). With
an estimated 10000 trillions of individuals, they equal the global human
biomass, and constitute most of the animal biomass of rainforests [2]. Key to
their success are the myriad of interactions ants engage in with members of
their own colony, other insects, fungi, microbes and plants (figure 1 and
table 1). These interactions have long been used as systems in which to address
evolutionary questions about mutualism, coevolution, adaptation and animal
communication. In this review, we highlight some of the most important inter-
actions between ants and their biotic environment, centred on four points
relevant to this special feature: (i) ant/ant communication, (ii) interactions
between ants and plants, (iii) ant/fungus symbioses, and (iv) ants and their
endosymbionts. We also provide a timeline for the evolution of some of the
major ant biotic interactions.

2. Ant communication with other ants

Ants interact with a wide range of the organisms that are part of their biotic
environment. These interactions are mediated by semiochemicals, including
cuticular hydrocarbons (CHCs), chemical footprints, trail pheromones and
alarm pheromones, and these chemicals are central to cooperation and conflict
at distinct scales. This section and two papers in this special feature [4,34] focus
on chemical communication.

While solitary insects mostly communicate for mating, eusocial insects have
self-organized societies, where individuals communicate local information to
mediate tasks, such as the division of labour, collective resource utilization
and collective defensive actions [35]. CHCs are present on the cuticle of
virtually all insects, and play central roles as waterproofing agents, but also
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Figure 1. The diversity of ant biotic interactions. (a,b) Ant/ant interactions. (a) Slavemaking ant Protomognathus americanus (black) and its host Temnothorax
longispinosus. (b) Parabiosis between Crematogaster modiglianii (small, left) and Camponotus rufifemur (large, right). (¢d) Ant/other arthropod interactions.
(c) ant/lycaenid interaction. (d) The rove beetle Diploeciton nevermanni is a social parasite of the army ant Neivamyrmex pilosus. (e—k) Ant/plant interactions.
(e) Ant foraging on Senna scabriuscula extrafloral nectary. (f) Pheidole pallidula ant dispersing a Borderea chouardii seed. (g) Philidris nagasau ant farm of Squa-
mellaria plants in Fiji. (h) Pseudomyrmex concolor living in Tachigali domatium and cultivating Chaetothyriales fungi inside the domatium (black patches). (i—k) Ant/
pitcher plant interactions (Nepenthes). (i) Ant foraging on peristome nectaries. When it rains, the peristome undulates with raindrops, acting as a mechanism to
catch ant prey. (j,k) Mutualistic interaction between Camponotus schmitzi and Nepenthes bicalcarata. (j) Camponotus schmitzi ants live inside the hollow petiole of
N. bicalcarata (arrowhead) and are able to walk inside the pitcher and swim to steal Nepenthes prey (k). (/,m) Ant/fungus interaction (see also (/) Trachymyrmex ants
farm fungus cultivar). (m) Allomerus ants cultivate fungi to make carton scaffold to catch insect prey, here a horsefly. (n) Ant/microorganism interaction. Blochmannia
endosymbionts in bacteriocytes (green) in the midgut tisue of a pupa (shortly after pupation) of Camponotus floridanus ants. Red cells are midgut cells that do not
(yet) contain any bacteria. Photo credit: (a) Susanne Foitzik. (b) Florian Menzel. (¢) School of Ecology and Conservation, UAS Bangalore, India. (d) Christoph von
Beeren. () Brigitte Marazzi. (f) Maria Garcia, Xavier Espadaler, Jens Olesen. (g) Guillaume Chomicki. (h) Rumsais Blatrix. (k) Ulrike Bauer. (/) Scott Solomon.

(m) Claude Delhaye. (n) Sascha Stoll.

function as semiochemicals. Because CHCs primarily serve a
waterproofing role, one can wonder about the extent to which
climate, especially air humidity and rainfall, shapes CHC
evolution. Menzel et al. [4] address this question and find
that the amount of rainfall in an ant’s environment indeed
influences CHC profiles.

Particularly important to ant colonies is queen signalling,
which indicates the queen’s presence and fertility, and signals
workers to abandon their own reproduction and to help
with brood care [3,34,36]. If the queen’s fertility diminishes,
non-sterile workers or subordinate reproductives can take
over her function [36]. Queen signalling is mediated either
by CHC compounds [37-39] or volatile pheromones, as in
the fire ant Solenopsis invicta [40]. Caste influences the CHC
profiles [34,41,42], thereby facilitating the self-organization

of the division of labour [43]. Another crucial type of signal
for the survival of the colony is nest-mate recognition,
highlighted in this special feature [4].

Ant communication among nest-mates also concerns food
sources: ant workers alert and motivate their nest-mates, and
direct them to the food source using tandem running. Ant
trail pheromones originate from several glands (ventral
venom gland, poison gland, Dufour’s gland, sternal gland
or hindgut), and the origin of trail pheromones is often
subfamily-specific [44—47]. Quality of the food source, and
its quantity and distance from the nest, can be reflected
either in the strength of the trail [48] or in the abundance of
chemicals produced by distinct glands [44]. Finally, alarm
pheromones occur in all ant species studied [2], with the
responses depending on colony size and ant species. In the
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Table 1. Main types of ant biotic interactions.

partners involved

ant/ant interactions
within colony interactions cooperative
between colony interactions
befween spe‘cibes ihteractioh§
ant/other arthropod interactions
énbt/hémiptebran inte»rabctions

ant/butterfly interactions

ant/mollusc interactions parasitic
ant/diptera interactions parasitic
ant/spidef bin‘teract‘ions ‘ pdrasitif »
ant/beetle interactions parasitic
anf/wasp‘intéractibns ‘ ‘ pérasitif
ant/silverfishes interactions parasitic
ant/plant interactions

extrafloral nectary/ant mutualistic
elaiosome-based dispersal by ants mutualistic
seed predation (harvester ants) parasitic

domatium-based symbiosés

plant farming mutualistic
ant/pibtche‘rb pIant interactions  mutualistic

ant/fungus interactions

attine-fungus farming

ant-Chaetothyriales-domatium interactions mutualistic

ant— Chaetothyriales —carton interactions mutualistic

ant/microorganism interactions
ant/bacterial endosymbionts
ant/bacterial gut symbionts

ant/fungal gut symbionts mutualistic

ant genus Cardiocondyla, when sexual conflict occurs, winged
males mimic the CHC profile of females to protect themselves
against wingless males attacks [49,50].

The interactions of ants with other ant species are of three
main types, mutualistic, parasitic or competitive. In this special
feature, two studies focus on the evolution of chemicals that
mediate mutualistic (parabiotic) [4] and parasitic ant/ant
interactions [34]. Parabiosis ([51]; figure 1b) is a mutualistic
symbiosis between different ant species that involves nest
sharing, joint foraging and aphid tending, whereas brood are
kept separate [5,52]. The relation is asymmetric in that only
one of the species locates the pheromone trails of the other
[53,54]. This asymmetry is reminiscent of parasitic ant/ant
interactions (see below) and thus suggests that parabiosis
might have evolved from parasitic associations [55-57]. Two
factors appear to maintain parabiosis as mutualistic and
prevent aggression: distinct CHC profiles with long carbon
chains (more than C35; [4], this special feature) allow an ant
colony to differentiate its parabiont from other ant species,
and appeasement pheromones on the cuticle suppress
aggressiveness, as shown for a Camponotus/Crematogaster
parabiosis [58]. Non-parabiotic ants, which have different

type of interaction

antagonistic
mutualistic (parabiosis); parasitic (social parasitism)

mutualistic to parasitic

mutualistic (rarely parasitic)

mutualistic or parasitic

mutualistic or parasitic

references

(3]
[4,5]; figure 1a,b

mutualistic to parasitic [6,7]

[8]; figure 1c

9

[10]

il

[12-14]; figure 1d
[15]. s
(6]

[17]; figure Te

[18]; figure 1f

[19]

[20,21]; figure 1h

[22,23]; figure 1g

[24,25]; fiqure 1i—k
""" [26,27); figure 1/
[28,29]; figure 1h
[30]; figure 1m ‘

[31-33]; figure 1n

mutualistic (but also likely commensal and parasitic) [6]

6]

CHC profiles and lack appeasement pheromones, are attacked
as intruders [59,60].

About 220 ant species (out of more than 13 000) are para-
sites of other ant species, often living in the same nest as the
‘host” ([61], figure 1a). Such parasites either exploit other
species by using their pheromone trails to find the discovered
food source [62] or use ‘eavesdropping’—using auditory cues
as information on food sources [63]. Trail following is always
unilateral [62]. Distinct classes of social parasites exist,
depending on whether or not they keep their brood separate
from the host, and whether or not they kill the queen (see [61]
for a review). When parasites locate the host nest, they need
to prevent attacks from the host. This can be achieved by
parasites: (i) mimicking the CHC signature of their hosts
[61]; (ii) acquiring it via wiping themselves against the
host’s surface (allogrooming) [64]; (iii) secreting a substance
to appease the host [65]; (iv) chemically inducing fights
among host workers to ease nest takeover [66,67]; and/or
(v) reducing the CHC recognition cue so they become ‘invis-
ible” [34]. A particular type of social parasitism is
slavemaking in which ants capture broods in raids to increase
the worker force of their colony. In this special feature,
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Kleeberg et al. [34] show that ‘chemical camouflage’ evolved
several times in slavemaking ants (figure 1a) and that the
shifts in the CHC profiles that mediated the evolution of
parasitism affected mostly the worker caste, but hardly the
reproductive caste.

3. Interactions between ants and plants

Ants engage in a range of interactions with plants, including
non-symbiotic defence mutualisms mediated by extrafloral
nectaries (EFNs) ([17]; figure 1e), spore, seed or fruit dispersal
(myrmecochory) ([18]; figure 1f), plant farming ([22,23,68];
figure 1g) and ant/plant symbioses ([20,21]; figure 1/). Ants
are prey for carnivorous plants, such as Nepenthes, but at
least one carnivorous species has domatia and houses ants
(figure 1i-k and table 1). Defence mutualism and dispersal
by ants are widespread both in the tropics and temperate
regions, whereas ant/plant symbioses and plant farming
are restricted to the tropics. Dispersal by ants involves
lipid- and protein-rich appendages on seeds that serve as
rewards for the ants that disperse the seeds. Ant/plant sym-
bioses involve plants that provide nesting spaces (domatia) to
ants in return for extra nutrients brought in by the ants and
the killing of insect herbivores and vines that shade, and
directly or indirectly damage, the ant-hosting plant [21].
Plant farming occurs in so-called ant-gardens, where ants
plant the seeds of selected epiphytes inside their carton nest
in return for nest stabilization and food, and an extreme
case of plant farming occurs in Fiji, where the ant Philidris
nagasau obligately farms six species of the Rubiaceae genus
Squamellaria [23]. These ant/plant interactions must involve
chemical communication in: (i) the selection of the particular
seed species farmed in the gardens; (ii) the detection of
host plants by founding queens; (iii) the discrimination
of plants to prune from or near the host (but obviously
not the host itself), (iv) the selective patrolling on young
developing host shoots (but not other shoots); and (v) host
damage-induced more active protection [69].

Ant-garden ants are able to identify their host plant’s
seeds by chemical cues present on the seed coat [70], and
seeds from distantly related species that may be part of the
same ant gardens have evolved convergent seed chemical
signatures [70,71]. One of the key compounds (6-MMS) is
also found on the ant head [71], suggesting that ant-gardens
might involve chemical mimicry, as initially hypothesized by
Ule [72]. Such seed-collecting behaviour occurs in southeast
Asian ant gardens [73]. In Fiji the dolichoderine ant Philidris
nagasau obligately farms not only by planting, but also ferti-
lizing, six Squamellaria species (Rubiaceae) by defecating in
the plant-provided nesting side (domatium) of these plants
from the seedling stage on, in return for nesting space and
food rewards ([23]; figure 1g). The chemical basis of the
latter interaction is as yet unknown. In this issue, Chomicki
et al. [68] reveal new aspects of the macroevolution of south-
east Asian and Australasia ant gardens, including the
independent origin of 13 ant-garden fern and flowering
plant lineages, and the acquisition during evolution of further
host lineages by the ants’ broadening of their gardens’
diversity.

An implicit consequence of specialized farming mutual-
isms, such as those between Squamellaria and Philidris
nagasau in Fiji, is a structured population (with high

relatedness on both the ant and the plant side) [23]. In this n

special feature, a theoretical study [74] reveals that popu-
lation structure reduces the benefits from partner choice (a
mechanism that stabilizes mutualisms by allowing active
partner discrimination), as long as the benefits to symbionts
are undirected. The Squamellaria/P. nagasau mutualism, how-
ever, shows population structure and partner choice with
rewards directed to a specific partner, namely P. nagasau
[23,75], suggesting that population structure and the
specificity of benefits indeed need to be modelled together.

The efficiency of herbivore protection by plant-nesting
ants (in the context of local herbivore pressure) plays a central
role in the stability of ant/plant and ant/plant/fungus
symbioses. In this special feature, Orivel et al. [76] reveal
trade-offs in ant-plant—fungus mutualisms as a result
of the same traits being simultaneously involved in two
mutualisms. Ants nest in domatia, but cultivate fungi in a
carton scaffold that workers use to hide and trap insects
(figure 1m). More investment in fungi leads to less plant
defence, and species that provide too little defence should
be displaced in the long term [76]. Reduction in plant defence
can also occur as a result of abiotic stress, such as that experi-
enced at high altitudes [77]. An example of this is provided
by the results of Plowman et al. [78], who report on ant/
plant mutualistic networks along an elevation gradient in
Papua New Guinea and find that the benefits for the plant
are reduced at high altitudes.

Convergent evolution is frequent in species interactions
[79], probably because of similar biotic, abiotic and phyloge-
netic constraints. A particular form of convergence is parallel
evolution, wherein similar traits evolved in related species
but from different lineages. Phylogenetic analysis revealed
such parallel evolution in the iconic ant/plant symbiosis
involving Pseudomyrmex ants that protect Vachellia trees [80],
and in this special feature, Ward & Branstetter [81] now use
a phylogenomic approach to show that two closely related
Pseudomyrmex lineages independently evolved traits related
to obligate domatium-living. Detecting such cases of inde-
pendent evolution, impossible without abundant genomic
data, is important for our understanding of the flexibility of
specialization and generalization.

4. Ant interactions with fungi

A particularly fascinating mutualism is that between attine
ants and fungi (figure 1I). Attine ants obligately depend on
mutualistic fungi for food. Five types of fungal farming by
attine ants are known, from the generalist agriculture prac-
tised by the basal-most attine lineages to the specialized
agriculture of a single fungal clone practised by the higher
attines (including leafcutter ants) (reviewed in [26]). Attine
farming mutualisms involve two further protagonists,
the parasitic fungi in the genus Escovopsis [27], which also
coevolved as part of tripartite associations [82], and
the mutualistic Pseudonocardia bacteria that densely cover
the lower part of these ants’ thorax and that produce an
antibiotic effective against Escovopsis [83,84].

Ants also interact with Chaetothyriales fungi, either as
part of the carton nest building process where arboreal
ants use fungal hyphae to strengthen the nest or trap insects
([30,85], figure 1m) or inside plant domatia as part of an ant/
plant symbiosis ([28,29], figure 1h). Some domatium-living
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Figure 2. Phylogenetic distribution of ant symbioses with hemipterans, plants, and fungi. The tree from Moreau & Bell [99] was kindly provided by Corrie Moreau.
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Chaetothyriales seem to be cultivated by ants and are
involved in a complex trophic mutualism where the ants
(especially larvae) feed on the fungi, which they actively fer-
tilize by defecation [86], and the fungi play a role in nutrient
recycling as well as facilitating nutrient uptake by breaking
down materials [87]. In this special feature, Vasse et al. [88]
show that ant/Chaetothyriales interactions evolved multiple
times and that carton nest fungi and domatium fungi
form different lineages. Another breakthrough published in
this special feature is the finding by Baker ef al. [89], who
report community-level differences in domatium fungi and
evidence that ant queens transport fungal communities
when colonizing new trees.

5. Ants and their endosymbionts

Ant endosymbionts are microorganisms living either in
specialized intracellular structures or in the ant gut. Endo-
symbiotic microbiomes may be central to the success of
ants in tropical canopies and in other areas depleted in
proteins ([6,90], this special issue). The so far best-known
(obligate) bacterial endosymbiosis with ants involves Campo-
notus (the largest ant genus with more than 1000 species)
and Blochmannia bacteria living in structures called bacterio-
cytes ([91], figure 1n), and these endosymbionts are also
found in related genera [31]. Bacteriocytes in ovules are
transmitted maternally [32,33], which has led to cospecia-
tion between Blochmannia and Camponotus [92]. The
bacteria provide the ants with essential amino acids and
potentially recycle nitrogen by using ant urea that they
can break down with their functional urease [31,93]. Besides
these intracellular endosymbionts, ants have extracellular
bacterial endosymbionts in the gut. This has been documen-
ted in Tetraponera (Pseudomyrmecinae) ants, which have a
dense aggregation of gut bacteria that fix nitrogen and
supplement the ants’ phloem-based diet [94]. In this
special feature, Pringle & Moreau [6] reveal new parts of
the endosymbiont puzzle: ants share gut endosymbionts
with their hemipteran trophobionts (via the honeydew
they feed on). Moreover, ants have many facultative sym-
bionts, and for the first time, a fungal endosymbiosis is
discovered in Azteca [6].

6. The timeline of ant interactions with fungi,
hemiptera and plants

The first unambiguous ant fossils date from the Lower
Cretaceous [95,96], and molecular clock analyses have dated
the ant crown group to 120-160 million years ago (Ma)
[97-99]. Attine fungiculture is 50-60 million years old
[100,101] and has a single evolutionary origin, but leafcutter
ants appear to have evolved only 8-12 Ma [100]. However,
several other ant lineages also use and farm fungi
(figure 2). Interactions between ants and hemiptera (a subor-
der of Rhynchota) vary from generalist and facultative to
specialized and obligate, and involve a wide range of
aphids that provide honeydew or ‘meat’ [7]. They have
evolved multiple times during ant evolutionary history
(figure 2), and dating associations with hemipterans thus

will require densely sampled phylogenies for both groups. [ 6 |

Fossils in amber have revealed ant/hemipteran associations
in the Eocene (34-55Ma) [102] and Early Miocene (15—
20 Ma) [103,104], but comparative phylogenetic analyses are
still lacking.

Regarding interactions with plants, phylogenetic dating
and trait analyses suggest that elaiosomes (fatty seed appen-
dages) that mediate plant dispersal by ants evolved as early
as 75Ma [105]. Non-symbiotic defence mutualisms based
on EFNs are documented in the fossil record since the Oligo-
cene (23-34 Ma; [106]), and evolved over 450 times in
vascular plants [17], with the earliest EFNs originating at
least 35-40 Ma [107-109]. Ant/plant symbioses mediated
by plant-formed nesting sites (domatia) have at least 158
independent origins, starting some 15 Ma in the Neotropics
and Australasia, and as recently as 5 Ma in Africa [21].

7. Conclusion

In organizing the symposium ‘Ants 2016: ant interactions
with their biotic environments” and this special feature
issue, our aim was to bring together workers in this field to
foster exchange and encourage integrative approaches. This
Introduction has highlighted some of the ways through
which ants interact with their biotic environment, and we
also offer a new timeline (figure 2) for the evolution of inter-
actions with hemipterans, plants and fungi. Studying
interactions between ants and other species provides an
opportunity to address fundamental and timely ecological
and evolutionary questions.

A central theme that remains poorly studied are the gen-
etic bases of many ant biotic interactions, which will
probably emerge in the next decade, with several ant gen-
omes published (e.g. the fire ant: Solenopsis invicta [110];
the Argentine ant: Linepithema humile [111]; the red harvester
ant: Pogonomyrmex barbatus [112]; the leafcutter ant Atta
cephalotes [113] and Pseudomyrmex plant ants [114]) and
ever faster and low-cost, next-generation sequencing
approaches and gene expression studies for targeted tissues
and genes. Genomic approaches will allow a new under-
standing of ant biotic interactions by revealing discrete or
genome-wide selection, gene duplication or loss or gene
expression changes linked to new interactions [8,115].
Another emerging theme is multi-partite interactions, how
they evolve and how the benefits are negotiated between
species. Unravelling these and other themes relevant to
the interactions between ants and their biotic environment
will require the integration of multiple approaches, as
exemplified in this special feature.
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